Machine learning methods for atmospheric molecular level applications

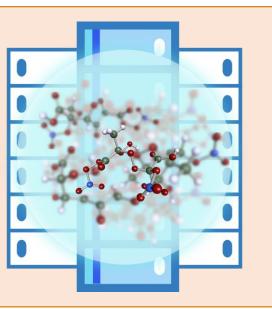
Vitus Besel^{1*}, Milica Todorović², Theo Kurtén³, Patrick Rinke⁴ and Hanna Vehkamäki¹ ¹ Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, 00560 Helsinki, Finland

² Department of Mechanical and Materials Engineering, University of Turku, FI-20014 Turku, Finland

³ Institute for Atmospheric and Earth System Research/Chemistry, University of Helsinki, 00560 Helsinki, Finland

⁴ Department of Applied Physics, Aalto University, FI-00076 Helsinki, Finland

I. Motivation


Atmospheric aerosol particles have an important influence on the climate and air quality. Most atmospheric aerosol particles are formed by the clustering of gas-phase molecules in the atmosphere. Highly oxygenated molecules (HOMs) play a significant role in this aerosol particle formation process, but they are difficult to study due to the large number of HOM species in the atmosphere (> 10⁷).

2. Research

We investigate HOM saturation vapor pressures (p_{Sat}) on a big data scale. The p_{Sat} is calculated with quantum chemistry in the context of a large scale calculation workflow (Merlin). We calculate subsets of available HOMs and train a Gaussian Process Regression machine learning model within an Active Learning loop to predict p_{Sat} .

3. Research goals

- Create HOM database
- Reliably predict p_{Sat} of previously unseen HOM
- Evaluate Active Learning Loop picking strategies

